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A13STRACT

We describe a IJirect  Linear Algebraic I)econvolution  (DI,AI))  approach to imaging
of data from Compton  ~-ray telescopes. lrnposition  of the additional physical constraint,
that all components of the model bc non-negative, has been found to have a powerful
effect in stabilizing the results, giving spatial resolution at or near the instrumental
limit. A companion paper (Dixon et al. 1993) presents preliminary images of the Crab
Nebula region using data from COMP’I’E1,  on the Compion  Gamma-Ray Observatory.

1. INTROD1JCTION

Compton gamma-ray telcscopcs, despite excellent rejection of the instrumental
background, have been handicapped by complicated imaging properties. Conversion
of data from such instruments into images is a special case of the linear inverse prob-
lcm, which occurs again and again in astrophysics (e.g., Craig and ]hown,  1986). I,inear
methods such as linear least-squares (L1,SQ) have not generally been effective for Pois-
son deconvolution  problems, despite their dominance in model-fitting. Rather Poisson
dcconvolution  has mostly fallen to such nonlinear approaches as the maximum likelihood
and maximum entropy methods.

Nevertheless, linear methods have many advantages that could make them attractive
were their defects overcome. Jl ere wc describe a linear approach to the inversion of data
from Compton telescopes that avoids some of the problems previously encountered. I’he
requirement that all sources bc non-negative has a crucial effect, stabilizing tbc method
against ill-conditioning.

2. LEAST-SQUARES J)lI;CONVOI.Ug’10N 01~ POISSON DATA

Four parameters characterize each event from an ideal Compton ~-ray telescope:
total energy (E), scattering angle (0), and the celestial co-ordinates (a, 6) of the vector
connecting the two interaction points. Wc bin the data space Z into 1 = ll; x le x la x 16,

total bins, where E is binned by il; = 1, ., ., lE, 0 by ie, etc. Given J sources, we write
for each data bin that the expectation of the counts ni is a sum with a term for each
source:

J

(1)
j=]

where the data bins have been ordered by the sing]c  index i = 1, . . . . 1 combining
(i~; , ie, i~, i~). The elements A ij of the 1 x 3 matrix A (called the design matrix),  are
constants, known if the source positions and instrument response function are given.
q’hc Fj arc the unknown fluxes of the sources.

Equation (1) has the form of a ]incar  transformation of the space C7 of source fluxes
into the data space Z. This linearity results from the fact t}lat -y-ray telescopes are
essentially linear instruments; i.e., the response due to a sum of sources is equal to
the sum of the responses taken separately] Note that equation (1) can be generalized

I At this ~oir)t jn the ~rgl,,ncl,t we take the point of view that, negative data and nlodel vectors are
mathematically sensible, but do not occur physically. q’his is required for the model and data spaces
to be linear vector spaces. The requirement of positivity is considered in Section 3 N.
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to take account of linear modelsfor the instrument background simply by inclusion of
appropriate extra terms. We assume herein that such terms have been added as needed.

In the model-fitting situation we SOIVC  equation (1) with a J.LSQ algorithm (e.g.,
Eadie  d al. 1971; Press et al. 1986) to obtain estimates flj of the fluxes Fj:

(2)

where Aij are functions of tl]e Aij . But  for deconvolution  do not know the source
positions, and hence can no longer calculate the Aij a priori.

Therefore we enlarge the model space by covering it with a grid of sources (pixels)
at known positions. If the pixels were placed at all possible positions (’distinguishable
by the indrumeni), the problem would be formally the same as for equation (1), to bc
solved by l,LSQ.  We would expect to obtain a result statistically consistent with zero
for pixels with no source, and the correct fluxes for those at the positions of real sources.

Unfortunately this approach has usually failed completely in practice, either duc to
singularity of the normal matrix (AT A), or to resulting images which contain noise that
overwhelms the cxpectcd  signal. Strong anticorrelation  among adjacent pixels causes
oscillations between large positive and negative fluxes. These problems arc due to at
least three distinct causes: First, since the number of data bins is typically very large,
the number of counts per bin is usually small. Many algorithms (e.g., Bcvington  1969,
REGRES  with MODE=  – 1 ) for fitting Poisson data by linear least-squares (PI,LSQ
algorithms) do not work reliably for small numbers of counts pcr bin. Second, spacing
the model grid closer than the intrinsic instrument resolution leads to nearly singular
normal matrices, with very large elements in the inverse normal matrix, and oscillatory
behavior. Finally, because the number of terms in the mode] is typically large, compu-
tational problems may arise in simpler matrix algorithms. Near-singularity due to too
fine a grid exacerbates precision di~culties arising from the size of the design matrix.

Each of these maladies infecting PI,I.SQ  dcconvolution  is effectively curable: First,
a method of multi-parameter LI,SQ fitting to Poisson data which works in the limit
of small  numbers of counts has been developed for high-resolution y-ray  spectroscopy
and other purposes (Wheaton ei al. 1993). It is shown therein that weighted l,LSQ is
unbiased for arbitrarily small counts  if the normalized weights (wi, where xi wi = 1)
for each equation i and the count data ?li arc independent. Note that the comtnonly
used approximation Wi = 1 /u~ % l/?~i violates this condition and must bc avoided.
Second, care in choosing the spacing of the model grid can control the second problem.
The condition of the design matrix is typically extremely sensitive to too fine a choice
of binning in the rnodcl space. Finally, Singular Value I)ccomposition  (SVD; see, e.g.,
I’ress  et aL 1986) is essential in practice bccausc  it allows even very large, singular or
nearly  singular systems to be solved on subspaces  which are unaffected by any linear
dependenccs  among the columns of A, without serious numerical precision problems.

“1’hese methods together have made l)ircct ],incar  Algebraic Dcconvolution  (DLA1))
practical in many situations where it has previously been ineffective. Ilased on our
experience with it, the main problcm  is in determining t}lc finest pixel spacing that can
bc used, This latter obstacle has been cffcctivcly removed by a taking advantage of onc
further essentially physical fact, of which linear algebra knows nothing: all real sources
must bc non-negative. This constraint dramatically improves the attainable resolution.

3. THE  POSITIVITY  CONSTRAINT

There are reasons to expect the positivity  constraint to be especially important for
dcconvolution. First, as noted above, when the pixels arc too finely spaced, the result
is a strong anti-correlation between adjacent image elements, and resulting oscillatory
behavior. I’ositivity  forces the negative excursions in the image to rise to zero, and
it also forces adjacent positive excursions to dccrcasc  correspondingly, because of the



anti-correlation. The result is to flatten the images, strongly suppressing features not
statistically required.

A heuristic argument illustrates another aspect of the power of the positivity con-
straint for recovering astronomical images, where most pixels are zero, from data equa-
tions like Eqn. (1), Consider a. simple image consisting of a 3 x 3 field of 9 pixels.
Given, e.g., row and column sums, we would have six equations of the form (l), but
with J = 9, no solution would bc possible. If several row and column sums were zero it
would not help because of the possibility of canceling negative and positive pixels. Rut
using positivity, a row or column sum of O would imply all ihree of the corresponding
pixels were also zero: that is it would be equivalent to three additional equations, not
one. Thus not only does the constraint suppress noise, in effect it may also bring in
many further equations, so that undcrdctcrmined singular systems become tractable.

Equation (2) yields an identity if applied to the ezpected counts iii and substituted
into equation (1), when it must yield a positive solution for a positive model. If then
we could repeat the experiment many times to obtain ncw data sets like (nl, . . . . n]),
the ensemble of their corresponding estimates would be distributed so that the iso-
probability surfaces, R inclined J-dirncnsional  ellipsoids, would bc centered on the true
solution, (FI, . . . . FJ). ]f the tots] cxpcctcd  counts (xi fii) >> 1, the distribution is
virtually normal. Because of the finite extent of the probability ellipsoid, the solution
for any single obserwed  data set {ni} can bc outside of the positive region.

For a single gaussian trial, the likelihood function (e.g., Eadie  et al. 1971) for the
true answers would bc peaked in an c]lipsoid, similar to the onc dcscribcd above, but
centered at the point estimate, equation (2). q’hc positivity  constraint excludes values
outside the first quadrantz, so we set the likelihood zero clscwhcre.  There results a
truncated multi-normal distribution, with a maximum on the boundary of the first
quadrant if the point estima.tc  (2) is outside it; as it is, almost always, in dcconvolution
problems. Inside or outside, wc take the co-ordinates of the maximum to be the best
solution.

4. EXPERIENCE WITI1 SUBROUTINE NN1,S

While working toward an algorithm to find the above maximum, we discovered a
pre-existing subroutine which dots much of what wc need. ‘1’hc  FOR1’RAN subroutine
NNI.S (I,awson and 11 anson 1974), given an ] x J design matrix A aild ]-vector ~, SOIVCS
the ovcrdctcrmincd  systcm

L=Ail (3)

for Z in least-squares, subject to the constraint that Xj 20.
It has been possible to usc much fmcr pixel grids with NNI,S than previously. images

of the Crab Nebula region with COhII’’llJ’~I,  (l)ixon  et al. 1993) show that the spatial
resolution obtained is essentially the instrumental resolution. Sources not ccntercd  on
a pixel yield adjacent peaks, the centroid of their flux corresponding closely to the true
source position, If the pixel grid is refined too far, the image of a source breaks up into
a cluster of adjacent peaks, W11OSC  total flux is essentially that of the single source peak
seen at lower rcsol ut ion.

For data of very high statistical quality, all pixc]s in the image arc positive without
constraint. But  on re-analyzing  the data with a finer pixel grid, the oscillations will
appear, and positivity can bc invoked to stabilize the result. ‘1’hus  for high-statistics
data, the effect of positivity is to allow the effective resolution to be pressed beyond
what would otherwise bc possible.

A problem not yet solved is the combination of partial data sets. In a series of
simple source-background subtractions (i. e., J = 2 fits), when the net source estimates
are not significant so that many arc negative, it is of course a serious error to discard the
negative estimates (or set them to zero) and average the remainder. Such a procedure

2 Where no confusion can arise, wc call the 2J regions of uniform siguature, such as (+ + -1 . ..+ ++),
“quadrants” even for J >2.



would introduce a large bias. In general, simple averages of constrained results are
biased. Wearecurrently  pursuing a. method ofcombinationb  ased on multiplicationof
the multi-normal functions for each data set.

5. PROD1,EM AREAS AND EXTENSIONS

‘The NNI,S routine described in the previous section has allowed the effect of the
positivity constraint to be explored in a. useful preliminary way. However several prob-
lems remain which prevent the current method from giving a wholly satisfactory solution
to the practical problems in real data analysis: First, NN 1,S gives no direct  information
concerning the uncertainties in the answers and requires a complete matrix solution for
each data set, as nothing like an inverse matrix is available. Also, while based on the ex-
perience we have had in solving large COMP’I’I;L problems the practical advantages of
SVD are mostly preserved in NN1.S,  the SVD matrix factors (U, W, and V, Press et al.
1986) are not directly returned. In t}le current form of the algorithm, the large model
space $ and data space Z imply that very large matrices must be manipulated. For
the present, this requires a supercomputer.  Finally, there are still theoretical questions,
especially concerning the combination of results for partial data sets.

We believe we understand how to remedy all these problems in principle. Ideas for
an algorithm, which would run after SVI) and yield the best constrained LLSQ solution,
are currently being tested. There are also several ways in which the size of the matrices
which have to be manipulated can eventually be reduced, probably by two orders of
magnitude or more.

6. CONC1,USION

Based on theoretical considerations, verified by studies with hfonte  Carlo data,
calibration and balloon data with the UC Riverside ~-ray telescope, and flight data
from the CO MPTllI, experiment on CGRO,  we conclude as follows: First, DLAI)  is a
useful complement to more traditional non-linear approaches if care is taken to observe
the precautions set forth in %ction  2. Second, limitations on the resolution can be very
markedly relaxed by taking advantage of one additional physical  constraint, that all real
sources are non-negative. While considerable work remains to fully implement DI,A D
with the positivity constraint, use of the NNI,S  subroutine of I.awson and Ran son (1974)
has allowed its power to be verified and explored. The results to date (I)ixon  et al. 1993)
have been very encouraging.
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